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Vimentin intermediate filaments are a major cytoskele-

tal constituent of cells of mesenchymal origin. They have

been colocalized with a variety of intracellular structures

such as actin filaments and the plasma membrane. La-

beled actin filaments, observed //; vitro by fluorescence

microscopy, break in the presence of polymerizing vimen-

tin: the time course is consistent with stopped-flow mea-

surements of vimentin polymerization. This breakage

phenomenon appears to be specific for vimentin. Inhibi-

tion of vimentin network formation was observed with

phosphatidyl inositol phosphate (PI(4)P) and phosphati-

dyl inositol bisphosphate (P1(4,3)P:I, but not phosphatidyl

choline (PC), phosphatidyl serine (PS), or phosphatidyl

inositol (PI). Taken together, these results indicate a spe-

cific interaction of vimentin with F-actin and polyphos-

phoinositide lipids.

Introduction

Vimentin-type intermediate filaments are a major cy-

toskeletal constituent of cells of mesenchymal origin.

Theories as to their function vary from maintenance of

cellular integrity (Lazarides, 1980) to gene regulation

(Traub and Shoeman, 1994). There is //( vivo evidence for

vimentin colocalization with other cytoskeletal elements,

such as actin (Brown and Binder, 1992; Gary et al.. 1994;

and Tint et al.. 1991) and microtubules (Gurland and

Gunderson, 1995; Gyoeva and Gelfand, 1991 ), as well as

with cellular organelles, such as the plasma membrane
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and the nucleus. Here we present in vitro studies indicat-

ing that vimentin interacts directly with both F-actin and

polyphosphoinositide lipids.

Materials and Methods

Purification of actin and vimentin

Actin was purified by the method of Spudich and Watt

(1971) with slight modifications. Actin was stored in G-

buffer (2 niM Tris. 0.2 mMCaCL, 0.5 mMATP, 0.5

mMDTT, pH 8.0) at -80°C; it was polymerized at a

concentration of 5 /jM by the addition of a ten-times

concentrated solution of F-buffer (lX:20 mMTris, 150

mMKCl, 2 mMMgCL, 0.2 mMCaCL, 0.5 niM ATP,

0.5 mMDTT, pH 7,4) and was stabilized by the addition

of equimolar TRITC-phalloidin (Sigma Chemicals. St.

Louis, MO). Vimentin was purified from Ehrlich ascites

tumor cells by the method of Nelson et al (1982). Vimen-

tin was extensively dialyzed against non-polymerizing

buffer (10 mMTris, 6 mMDTT, pH 7.6) to remove

residual urea and was polymerized by the addition of KCl

to 150 mM. All reagents were purchased from Sigma

Chemicals (St. Louis, MO).

F-actin-vimentin inleractions

F-actin. under either polymerizing or non-polymerizing

conditions, and stabilized by TRITC-phalloidin (10 nM),

was visualized by fluorescence microscopy in the pres-

ence of 20 fjM unpolymerized vimentin. A large number

of fields were recorded to videotape over time, and the

average length of F-actin —based on at least 200 filament

traces —was calculated.
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Figure I. With increasing time, the average length of F-actin decreases in the presence of polymerizing

vimentin. Labeled, phalloidin-slabilized actin filaments (10 nM) are visible by fluorescence microscopy in

a sample containing 18 fjM (1 mg/ml) unlabeled vimentin before and after addition of KCl to initiate

vimentin polymerization. The dimension of each image is 50 fjm in width, and the image in panel 4 was

taken 25 min after polymerization.

Rheology of vimentin networks

Rheology of vimentin networks wa.s carried out as de-

scribed previously (Janniey etal., 1991). Oscillatory mea-

surements of elastic modulus were made with a Rheome-

trics RFS II fluids spectrometer (Rheometrics. Piscata-

way, NJ) at a frequency of 1 rad/s and a strain amplitude

of 1%.

Results

F-actin-vimentin interactions

Labelled actin filaments were examined /;; vitro by

fluorescence microscopy and were seen to break in the

presence of polymerizing vimentin. Figure 1 shows a

panel of four video frames: the fluorescent filaments are

F-actin in a matrix of polymerizing unlabeled vimentin

filaments. Such breakage was not seen under non-poly-

merizing conditions, indicating that polymerization is re-

quired. The decrease in average F-actin length is shown
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Figure 2. Average length of F-actin decreases in the presence of

polymerizing vimentin filaments. Higher concentrations of vimentin re-

sult in faster rate of length decrease. Unpolymerized vimentin does not

cause a decrease in F-aclin length.
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Figure 3. Rheology of vimentin networks disrupted by polyphosphoinositide lipids. Other phospholip-

ids, such as phosphatidyl serine, phosphatidyl choline, and phosphatidyl inositol, had no significant effect

on vimentin polymerization.

in Figure 2 as a function of vimentin polymerization and

concentration. Tlie time course is consi.stent witii stopped

flow measurements of vimentin polymerization (data not

shown). This breakage phenomenon appears to be specific

for vimentin, since no breakage is seen with microtubules

in actin, or with actin in microtubules or fibrin (data not

shown).

Vimentin-phospholipid interactions

The interaction of vimentin and phospholipids was

measured by rheological methods and showed that poly-

phosphoinositide lipids inhibit the formation of an elastic

network. Inhibition was observed with PI(4)P and

PI(4,5)P2, and to a lesser extent with PI (Fig. 3). Inhibition

was not observed with PC or PS. These results are consis-

tent with early studies by Perides et al. (1986) showing

that phospholipid vesicles, especially those containing

PIP and PlPn, inhibit vimentin polymerization and depo-

lymerize preformed vimentin filaments.

Conclusions

Fluorescent actin filaments decrease in length in the

presence of polymerizing vimentin. Filament breakage

was not observed in other biopolymer systems, indicating

that the interaction is specific.

PIP and PIP: inhibit the polymerization of vimentin as

measured by rheological methods. This evidence points

to a specific interaction between vimentin and polyphos-

phoinositide lipids.
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